
Programming Fundamentals 2

using Python

Prepared by: Hanan Hardan

3/14/2022 1

Chapter 1:

Python Introduction

3/14/2022 2

Introduction

• Python is an Open-source language that can be

implemented using several Open-source editors:

– Anaconda (Jupyter Notebook, Spider, VS code, ..etc.)

– Google Colaboratory

Important Notes about Python

• Python uses new lines to complete a command, as opposed

to other programming languages which often use

semicolons or parentheses.

• Indentation refers to the spaces at the beginning of a code

line.

• Python uses indentation to indicate a block of code.

Example

if 5 > 2:

print("Five is greater than two!")

Note: Python will give you an error if you skip the

indentation:

Python Comments

• Comments can be used to explain Python code.

• Comments starts with a #, and Python will ignore them:

#This is a comment

""" This is a comment written

in more than just one line """

'''This is a comment written

In more than just one line '''

Python Data Types

Built-in Data Types

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

Python Data Types

• In Python, the data type is set when you assign a value to a

variable:

• Python has no command for declaring a variable.

Example Data Type

x = "Hello World" str

x = 20 int

x = 20.5 float

Python Variables

• You can get the data type of any object by using the type()

function:

• Example: Print the data type of the variable x:

x = 5

print(type(x))

Print(x)

Python Variables

• Variables do not need to be declared with any particular type,

and can even change type after they have been set.

• Example

x = 4 # x is of type int

x = ”Sally” # x is now of type str

print(x)

Variable Names

Rules for Python variables:

• A variable name must start with a letter or the underscore

character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters

and underscores (A-z, 0-9, and _)

• Variable names are case-sensitive (age, Age and AGE are

three different variables)

Variable Names

• Example

Note: Remember that variable names are case-sensitive

Legal variable

names:

Illegal variable names:

myvar = "John"

my_var = "John"

_my_var = "John"

myVar = "John"

MYVAR = "John"

myvar2 = "John"

2myvar = "John"

my-var = "John"

my var = "John"

Assign Multiple Values

• Python allows you to assign values to multiple variables in

one line:

Example:

x, y, z = "Orange", "Banana", "Cherry"

print(x)

print(y)

print(z)

• Assign one value to multiple variables

Example:

x = y = z = 10

Python Casting

• Specify a Variable Type

This can be done with casting. Casting in python is therefore

done using constructor functions:

• int() - constructs an integer number from an integer literal, a

float literal (by rounding down to the previous whole

number), or a string literal (providing the string represents a

whole number)

• float() - constructs a float number from an integer literal, a

float literal or a string literal (providing the string represents a

float or an integer)

• str() - constructs a string from a wide variety of data types,

including strings, integer literals and float literals

Python Casting

Example:

Integers: Floats: Strings:

x = int(1)

x= 1

y = int(2.8)

y= 2

z = int("3")

z= 3

x = float(1)

x = 1.0

y = float(2.8)

y= 2.8

z = float("3")

z= 3.0

w = float("4.2")

w= 4.2

x = str("s1")

x = 's1'

y = str(2)

y= '2'

z = str(3.0)

z= '3.0'

Input Statement

name = input ()

word = input('Enter a word: ')

• The value entered by the user is always considered string,

unless it was casted (the type is changed)

x = int (input ())

y = int (input ())

3/14/2022 15

Output Statement

print('Welcome:', end='')

print ('Sami')

x,y=4,5

print('sum=',end='')

print(x+y)

3/14/2022 16

Output Statement

w, x, y, z = 10, 15, 20, 25

print(w, x, y, z)

print(w, x, y, z, sep=',')

print(w, x, y, z, sep='')

print(w, x, y, z, sep=':')

print(w, x, y, z, sep='-----')

print(w, x, y, z, sep='\t')

Output Variables

• The Python print statement is often used to output variables.

• To combine both text and a variable, Python uses the +

character:

Example:

x = "awesome"

print("Python is " + x)

• You can also use the + character to add a variable to another

variable:

Example:

x = "Python is "

y = "awesome"

z = x + y

print(z)

Output Variables

• For numbers, the + character works as a mathematical

operator:

Example:

x = 5

y = 10

print(x + y)

• If you try to combine a string and a number, Python will give

you an error:

Example:

x = 5

y = "John"

print(x + y) -----> error

Python Operators

• Python divides the operators in the following groups:

– Arithmetic operators

– Comparison operators

– Logical operators

– Identity operators

– Membership operators

Python Arithmetic Operators

Arithmetic operators are used with numeric values

Operator Name Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

// Floor division x // y

Example 1

Write a Python program that reads 3 numbers and calculates

their average

Solution:

n1, n2, n3 = float (input ('Enter 3 numbers')), float (input ()), floa

t (input ())

average = (n1 + n2 + n3) /3

print ('average = ', average)

Example 2

Write a Python program that reads the basic salary of an

employee, calculates his tax (6% of his basic salary and

calculates the Net salary by the following equation:

Note: Net Salary = Basic Salary – Tax

Solution:

basicSalary = float (input('Please, enter the basic salary'))

tax = 0.06 * basicSalary

NetSalary = basicSalary - tax

print ('Net Salary = ', NetSalary)

Python Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or

equal to

x >= y

<= Less than or equal to x <= y

Python Logical Operators

Logical operators are used to combine conditional statements:

• Note:Printing Boolean values

True and False

Operator Description Example

and Returns True if both

statements are true

x < 5 and x < 10

or Returns True if one of

the statements is true

x < 5 or x < 4

not Reverse the result,

returns False if the

result is true

not(x < 5 and x <

10)

Python Identity Operators

• Identity operators are used to compare the objects, not if they

are equal, but if they are actually the same object, with the

same memory location:

Operator Description Example

is Returns True if both

variables are the same

object

x is y

is not Returns True if both

variables are not the

same object

x is not y

Python Membership Operators

• Membership operators are used to test if a sequence is

presented in an object:

Operator Description Example

in Returns True if a

sequence with the

specified value is

present in the object

x in y

not in Returns True if a

sequence with the

specified value is not

present in the object

x not in y

If Statement

• One way selection

Example:

• Indentation:

Python relies on indentation (whitespace at the beginning of a

line) to define scope in the code. Other programming languages

often use curly-brackets for this purpose.

Note: If statement, without indentation (will raise an error)

a = 33

b = 200

if b > a:

print("b is greater than a")

Python If ... Else

• Two-way selection

a = 33

b = 200

if a>b:

print ('a is the greatest')

else:

print (‘b is the greatest')

Python If ... Else

• Multi-way selection

The else keyword catches anything which isn't caught by the

preceding conditions.

Example

a = 200

b = 33

if b > a:

print("b is greater than a")

elif a == b:

print("a and b are equal")

else:

print("a is greater than b")

Python If ... Else

• Nested If:

You can have if statements inside if statements, this is

called nested if statements.

• Example:

x = 41

if x > 10:

print("Above ten,")

if x > 20:

print("and also above 20!")

else:

print("but not above 20.")

Example 1

Write a Python program that reads two integers and divides the

first over the second. Make sure that the second integer is not

zero, otherwise, give an error message.

Solution:

n1, n2 = int (input('enter two integers')), int (input())

if n2 != 0:

print ('The result is: ', n1/n2)

else:

print ('Error: Divide by Zero')

Example 2

• Write a Python program that reads an integer and decides

wither it is divisible of 3 or not.

Solution:

num = int (input ('Enter an integer'))

if num%3 == 0:

print (num, ' is divisible by 3')

else:

print (num, ' is not divisible by 3')

Example 3

x = int (input('Enter an integer'))

if x > 0:

R = x ** 2

else:

R = x ** 3

print ('R = ', R)

Example 4

• Write a Python program that reads a student mark, and

outputs the corresponding rank, according to the table

below.

Hint: Make sure that the mark is in the correct range

Example 4

mark = int (input ('Enter a student mark'))

if mark >=35 and mark <=100:

if mark >= 90:

print ('Excellent')

elif mark >= 80:

print ('Very Good')

elif mark >= 70:

print ('Good')

elif mark >= 50:

print ('Accepted')

else:

print ('Failed')

else:

print ('Mark out of range')

Example 5

Write a Python program that reads a day in a week from the user,

and prints the following:

1.Working day: if the user enters (Sunday, Monday, Tuesday,

Wednesday or Thursday)

2.Weekend: if the user enters (Friday or Saturday)

Example 5

Solution:

day = input ('Please, enter a week day')

if day == 'Sunday' or day == 'Monday' or day == 'Tuesday' or day

== 'Wednesday' or day == 'Thursday':

print ('Working day')

elif day == 'Friday' or day == 'Saturday':

print ('Weekend')

else:

print ('Wrong day name or wrong spelling')

Python If ... Else

• The pass Statement

if statements cannot be empty, but if you for some reason have

an if statement with no content, put in the pass statement to

avoid getting an error.

• Example:

x = int (input())

if x < 0:

pass #To Do: Add a proper error message

else:

print (x + 10)

Python Loops

Python has two primitive loop commands:

• for loops

• while loops

The For Loop

for x in range(6):

print(x)

for x in range(6):

print(x)

print()

for x in range(2, 6):

print(x)

for x in range(2, 30, 3):

print(x)

Example 1

• Write a Python program that prints the following sequence:

2 4 6 8 10 12 14 16 18 20

for x in range (2,21, 2):

print (x, end=' ')

• Write a Python program that prints the following sequence:

20 18 16 14 12 10 8 6 4 2

for x in range (20,1, -2):

print (x, end=' ')

Example 2

Write a Python program reads an integer from the user and

prints its factorial:

n = int (input ('Please, Enter an integer'))

prod = 1

for i in range(n, 1, -1):

prod *= i

print (i, '! = ', prod, sep = '')

The while Loop

With the while loop we can execute a set of statements as

long as a condition is true.

• Example: Print i as long as i is less than 6:

Note: remember to increment i, or else the loop will continue

forever.

i = 1

while i < 6:

print(i)

i += 1

Example 3

Write a Python program that reads a sequence of positive

integers and sums them. A negative integer should stop the

input.

print ('Please enter sequence of positive integers, when

finished, enter a negative integer')

sum = 0

num = int (input ())

while num >=0:

sum += num

num = int (input())

print ('Summation = ', sum)

Example 4

Write a Python program that reads integer numbers and finds their

product, each time keep asking the user to continue or not.

prod = 1

finished = False

num = int (input ('Please, enter an integer'))

while not finished:

prod *= num

print (num)

respond = input ('Do you want to continue? (Y/N)')

if respond == 'n' or respond == 'N':

finished = True

else:

num = int (input('Please, enter an integer'))

print ('Result = ', prod)

Break and Continue

• Break: when used in a loop, it skips the rest of the loop

body and exits it.

• Continue: when used in a loop, it skips the rest of the loop

body, but checks wither the loop condition is still true, if it

still true, it returns to the start of the loop body and

continues.

Example 5

Re-write the code in Example 4, by using Break command

prod = 1

while True:

num = int (input ('Please, enter an integer'))

prod *= num

respond = input ('Do you want to continue? (Y/N)').lower()

if respond == 'n':

break

print ('Result = ', prod)

Example 6

• Re-write the code in Example 5, but by ignoring the negative numbers.

• Hint: you can use break and continue commands

prod = 1

while True:

num = int (input ('Please, enter an integer'))

if num<0:

print ('Negative integers are ignored, try again')

continue

prod *= num

respond = input ('Do you want to continue? (Y/N)').lower()

if respond == 'n':

break;

print ('Result = ', prod)

The For Loop

• Nested For Loop

for i in range (1,6):

for j in range (2,4):

print (i*j)

